188 research outputs found

    Interconnection Networks for Scalable Quantum Computers

    Full text link
    We show that the problem of communication in a quantum computer reduces to constructing reliable quantum channels by distributing high-fidelity EPR pairs. We develop analytical models of the latency, bandwidth, error rate and resource utilization of such channels, and show that 100s of qubits must be distributed to accommodate a single data communication. Next, we show that a grid of teleportation nodes forms a good substrate on which to distribute EPR pairs. We also explore the control requirements for such a network. Finally, we propose a specific routing architecture and simulate the communication patterns of the Quantum Fourier Transform to demonstrate the impact of resource contention.Comment: To appear in International Symposium on Computer Architecture 2006 (ISCA 2006

    Anatomy of a message in the Alewife multiprocessor

    Get PDF
    Shared-memory provides a uniform and attractive mechanism for communication. For efficiency, it is often implemented with a layer of interpretive hardware on top of a message-passing communications network. This interpretive layer is responsible for data location, data movement, and cache coherence. It uses patterns of communication that benefit common programming styles, but which are only heuristics. This suggests that certain styles of communication may benefit from direct access to the underlying communications substrate. The Alewife machine, a shared-memory multiprocessor being built at MIT, provides such an interface. The interface is an integral part of the shared memory implementation and affords direct, user-level access to the network queues, supports an efficient DMA mechanism, and includes fast trap handling for message reception. This paper discusses the design and implementation of the Alewife message-passing interface and addresses the issues and advantages of using such an interface to complement hardware-synthesized shared memory.National Science Foundation (U.S.) (Grant MIP-9012773)United States. Defense Advanced Research Projects Agency (Contract N00014-87-K-0825

    Comparing the Overhead of Topological and Concatenated Quantum Error Correction

    Full text link
    This work compares the overhead of quantum error correction with concatenated and topological quantum error-correcting codes. To perform a numerical analysis, we use the Quantum Resource Estimator Toolbox (QuRE) that we recently developed. We use QuRE to estimate the number of qubits, quantum gates, and amount of time needed to factor a 1024-bit number on several candidate quantum technologies that differ in their clock speed and reliability. We make several interesting observations. First, topological quantum error correction requires fewer resources when physical gate error rates are high, white concatenated codes have smaller overhead for physical gate error rates below approximately 10E-7. Consequently, we show that different error-correcting codes should be chosen for two of the studied physical quantum technologies - ion traps and superconducting qubits. Second, we observe that the composition of the elementary gate types occurring in a typical logical circuit, a fault-tolerant circuit protected by the surface code, and a fault-tolerant circuit protected by a concatenated code all differ. This also suggests that choosing the most appropriate error correction technique depends on the ability of the future technology to perform specific gates efficiently

    Integrated shared-memory and message-passing communication in the Alewife multiprocessor

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 237-246) and index.by John David Kubiatowicz.Ph.D

    Improving Quantum Circuit Synthesis with Machine Learning

    Full text link
    In the Noisy Intermediate Scale Quantum (NISQ) era, finding implementations of quantum algorithms that minimize the number of expensive and error prone multi-qubit gates is vital to ensure computations produce meaningful outputs. Unitary synthesis, the process of finding a quantum circuit that implements some target unitary matrix, is able to solve this problem optimally in many cases. However, current bottom-up unitary synthesis algorithms are limited by their exponentially growing run times. We show how applying machine learning to unitary datasets permits drastic speedups for synthesis algorithms. This paper presents QSeed, a seeded synthesis algorithm that employs a learned model to quickly propose resource efficient circuit implementations of unitaries. QSeed maintains low gate counts and offers a speedup of 3.7Ă—3.7\times in synthesis time over the state of the art for a 64 qubit modular exponentiation circuit, a core component in Shor's factoring algorithm. QSeed's performance improvements also generalize to families of circuits not seen during the training process.Comment: 11 pages, 10 figure

    FogROS2-SGC: A ROS2 Cloud Robotics Platform for Secure Global Connectivity

    Full text link
    The Robot Operating System (ROS2) is the most widely used software platform for building robotics applications. FogROS2 extends ROS2 to allow robots to access cloud computing on demand. However, ROS2 and FogROS2 assume that all robots are locally connected and that each robot has full access and control of the other robots. With applications like distributed multi-robot systems, remote robot control, and mobile robots, robotics increasingly involves the global Internet and complex trust management. Existing approaches for connecting disjoint ROS2 networks lack key features such as security, compatibility, efficiency, and ease of use. We introduce FogROS2-SGC, an extension of FogROS2 that can effectively connect robot systems across different physical locations, networks, and Data Distribution Services (DDS). With globally unique and location-independent identifiers, FogROS2-SGC securely and efficiently routes data between robotics components around the globe. FogROS2-SGC is agnostic to the ROS2 distribution and configuration, is compatible with non-ROS2 software, and seamlessly extends existing ROS2 applications without any code modification. Experiments suggest FogROS2-SGC is 19x faster than rosbridge (a ROS2 package with comparable features, but lacking security). We also apply FogROS2-SGC to 4 robots and compute nodes that are 3600km apart. Videos and code are available on the project website https://sites.google.com/view/fogros2-sgc.Comment: 9 pages, 8 figure
    • …
    corecore